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Different exhaustive and fuzzy partitions of the molecular electron density (F) into atomic densities (FA) are
used to compute the atomic charges (QA) of a representative set of molecules. TheQA’s derived from a direct
integration ofFA are compared to those obtained from integrating the deformation densityFdef ) F - F0

within each atomic domain. Our analysis shows that the latter methods tend to giveQA’s similar to those of
the (arbitrary) reference atomic densitiesFA

0 used in the definition of the promolecular density,F0 ) ∑AFA
0 .

Moreover, we show that the basis set independence of these charges is a sign not of their intrinsic quality, as
commonly stated, but of the practical insensitivity on the basis set of the atomic domains that are employed
in this type of methods.

I. Introduction

Tens of methods have been proposed over the years to
compute charges of atoms in molecules from first principles
(see refs 1 and 2 and references therein). In most of these,
charges are derived either from a partition of the orbital space3-8

or from a partition of the molecular electron densityF(r ),9-12

although some of the methods that are commonly classified as
belonging to the direct class may also be formulated within the
second.13 Methods based on the partition ofF(r ) may be further
classified into exhaustive and nonexhaustive (fuzzy) depending
on whether the real space is partitioned into exhaustive9 or
overlapping10 atomic domains (ΩA).

As known, the partition of space into atomic domains may
be translated into the problem of choosing atomic weight
functionswA(r ) that provide a partition of the unity:12

wA(r ) is a stepwise function exactly 1 at any pointr within ΩA

and 0 elsewhere in exhaustive partitions, whereas it is a
continuous function that usually takes a value very close to 1
near nucleus A and decays to 0 as we move away from it, in
fuzzy partitions. The atomic density of atom A,FA(r ), is defined
in both cases asFA(r) ) wA(r) F(r). In direct integration methods
(DIM), the electronic charge of atom A (NA) is determined by
integratingFA(r ) within R3.

Recently, a charge density analysis method called Voronoi
deformation density (VDD)1 has been proposed in which the
atomic region of atom A is defined as the part ofR3 closer to
the nucleus of that atom than to any other nucleus (Voronoi
cell). Moreover, NA in the VDD method is obtained by
computing the amount of charge that flows from/to a certain
atomic region to/from other regions due to bond formation. This
amounts to integrate the deformation density, defined asFdef(r )
) F(r ) - F0(r ), whereF0(r ) ) ∑AFA

0 (r ) is the promolecular
density andFA

0 (r ) is a reference atomic density for atom A,
over the Voronoi cell of the atom. The VDD scheme is a
particular case of a wider class of methods that we will call

flow integration methods (FIM) in whichNA is determined by
integratingwA(r ) Fdef(r ) over R3.

FIM methods have been praised in recent years for providing
basis set independent, chemically meaningful atomic charges.
Our aim in this paper is to critically ascertain the physical roots
of such claims. On exploring integration methods against a
redefinition of theFA

0 (r )’s, we will see that these charges are
strongly dependent on theFA

0(r )’s used to define the promo-
lecular density, particularly in systems traditionally considered
as highly ionic. The convergence properties of the atomic
charges when the basis set is improved will also be investigated
by taking the HCN molecule as a test example. Concerning this
point, we claim that the almost basis set independent charges
provided by some methods is due to the way in which these
methods define the weightswA

0(r )’s (nearly independent of the
wave function quality), and not to their greater intrinsic quality.

We have organized the paper as follows. In section II we
define different partitions ofF(r ) into atomic densities and use
them to derive expressions for the atomic charges within direct
and flow integration methods. The computational details of the
calculations that we have performed are given in section III. In
section IV, we discuss the atomic charges obtained for a set of
representative molecules according to the methods defined in
section II. This discussion is preceded by an analysis of the
basis set effects on the atomic charges of the HCN molecule.
The main conclusions are summarized in section V.

II. Charge Density Partition and Atomic Charges: Direct
and Flow Integration Methods

It is well-known that F(r ) always resembles the sum of
isolated atomic densities. This fact has invited many to express
F(r ) as a sum of atoms-in-the-molecule atomic densities,F(r )
) ∑AFA(r ), and to find theFA(r )’s in several ways. The methods
that we have actually used to perform this partition are described
in subsection 2.1. They will be used in subsection 2.2 to
determine the atomic charges using direct or flow integration
methods.

A. Atoms-in-the-Molecule Existing Atomic Densities.It is
possible to classify most of theFA(r )’s roughly in four
categories: topological densities, Hilbert-space partitioned* Corresponding author. E-mail: evelio@carbono.quimica.uniovi.es.
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wA(r ) ) 1 ∀r (1)
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densities, geometry-based densities, and densities that satisfy
extremal conditions.

The best known and probably most realistic and physically
meaningful topological space-partitioning method is that of
Bader’s theory of atoms in molecules (QTAIM).9,14 This
provides an exhaustive partition ofR3 in which the atomic
regions are defined as the 3D attraction basins (ΩA) of the
gradient field ofF(r ). ΩA usually contains a single nucleus and
is bounded by a zero local flux surface of∇F (∇F(r )‚n(r ) ) 0
for r ∈ S(ΩA), wheren(r ) is a vector normal to the surface
S(ΩA)). In terms of thewA(r )’s the QTAIM partition may be
recast as

Concerning Hilbert-space partitioned densities, a recent partition
of F(r ) into atomic components has been developed by Ferna´n-
dez Rico et al.7,8 In their approach, eachFA(r ) is determined by
following a minimal deformation criterion (MinDef in what
follows) of every two-center contribution toF(r ). Assuming that
F(r ) is given in terms of primitive Gaussian functionsφi(r )
centered on the nuclei of the molecule

(Pij are the first-order density matrix coefficients) the final result
is simple: every two-center (A and B) charge distribution is
assigned to the nearest atom, except if it lies just in the middle
of the A-B segment, which is half-and-half partitioned between
both centers. Algebraically,

wheremA(i) ) 1(0) if φi is (is not) A-centered,úi is the φi

exponent,úij ) úi - új, andΘ(x) is the Heaviside step function
(Θ(x>0) ) 1, Θ(x<0) ) 0, Θ(x)0) ) 1/2). It is easy to show
that Mulliken’s classical method can also be recast in the form
as in eq 5 by choosingPij

A ) 0, Pij/2, Pij depending if none, one
(φi or φj), or both (φi andφj) basis functions are centered on A.

A geometric partition ofF(r ) is the one inspired in Becke’s
partitioning of a general multicentered functionF(r ) into atomic
contributions,12 defined by the following set of equations:

whererA (rB) is the distance to atom A (B),RAB denotes the
internuclear distance between the nuclei of atoms A and B, and
RA and RB are atomic size adjustable parameters. ThewA(r )
function defined by eq 6 is very close to 1 on nucleus A and

decays to zero on getting apart from this nucleus. This
guarantees thatFA(r ) is associated to atom A. The stiffness of
the cutoff between different atoms may be enhanced by
increasing the parameterk that gives the number of times that
theh(νAB) polynomial is iterated to obtainPA(r ) in eq 7. In the
limit k f ∞, the 3D space is exhaustively partitioned into
disjoint atomic regions.

The last atomic density we will use is the classical stockholder
or Hirshfeld partition,10 defined by

whereF0(r ) ) ∑AFA
0(r ) andFA

0 (r ) is a reference atomic density
for the atom A. It can be shown15,16 that Hirshfeld’s atoms
minimize the Kullback-Leibler entropy deficiency functional,17

and are thus the ones best preserving the information contained
in the FA

0 ’s. If FA
0 in eq 12 is chosen as the ground state

spherically averaged density of neutral atoms A,F0(r ) coincides
with the promolecular density. Other possible choices of the
reference densities will be explored in section IV.

B. Direct and Flow Integration Methods. A direct (DIM)
or flow (FIM) integrated population analysis may be defined
such that the total charge of atom A is obtained as

(ZA is the nuclear charge of atom A), and

respectively. In the last equation,Fdef is the deformation density,
defined asFdef ) F - F0, where F0 ) ∑AFA

0 and FA
0 are

(arbitrary) reference atomic densities. Equation 15 is a generali-
zation of that used in the VDD method,1

which implicitly assumes thatFA
0 (r ) corresponds to a neutral

atom, i.e.

and thatwA(r ) in eq 15 is chosen as 1 inside the Voronoi cell
of atom A and 0 elsewhere. Notice that the DIM and FIM
recipes provide two different sets ofQA’s for a given density
partition. It is worthwhile to remark that, whenever

Equation 15 becomes equal to eq 14 and there is no real
difference between a FIM method and its DIM analogue.
Hirshfeld’s scheme (eq 12) clearly satisfies eq 18. Politzer’s
population analysis,18 where thewA(r)’s are deliberately selected
such that they define modified Voronoi polyhedra that partition
the space into disjoint regions satisfying eq 18, provides another
example in which this formal equivalence is valid whenever
the reference atoms stay neutral (NA

0 ) ZA).

wA(r ) ) {1 if r ∈ ΩA

0 elsewhere
(2)

F(r ) ) ∑
i,j

Pijφi(r ) φj(r ) (3)

FA(r ) ) ∑
i,j

Pij
A
φi(r ) φj(r ) (4)

Pij
A ) Pij[mA(i) Θ(úij) + mA(j) Θ(úji)] (5)

wA(r ) ) PA(r )/∑A

PA(r ) (6)

PA(r ) ) ∏
B*A

1

2[1 - h[h[...h
k times

(νAB)]]] (7)

h(νAB) ) (3νAB - νAB
3 )/2 (8)

νAB ) µAB + aAB(1 - µAB
2 ) (9)

µAB ) (rA - rB)/RAB (10)

aAB ) [(RB/RA) - (RA/RB)]/4 (11)

wA(r ) ) FA
0(r )/F0(r ) (12)

I ) ∑
A
∫FA(r ) ln(FA(r )

FA
0 (r )) dr (13)

QA ) ZA - NA ) ZA - ∫
R3FA(r ) dr (14)

QA ) QA
0 - ∫

R3wA(r ) Fdef(r ) dr (15)

QA ) - ∫Voronoi cell of A
Fdef(r ) dr (16)

QA
0 ) ZA - NA

0 ) ZA - ∫
R3FA

0(r ) dr ) 0 (17)

∫
R3wA(r ) F0(r ) dr ) ∫

R3FA
0 (r ) dr ) NA

0 (18)
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Many known charge density analysis methods may be
obtained by combining a definition of thewA(r )’s with eq 14
or eq 15. The methods actually used in this paper are defined
in Table 1: The fuzzy-VDD method is a version of VDD in
which the sharp Voronoi cell of atom A is smoothed by using
k ) 3 instead ofk ) ∞ in Becke’s definition ofwA(r ). Becke-
(T) is a direct integration method in which a Becke-like atomic
partition defined in refs 13 and 19 is used. This definition is as
follows: provided that a bond critical point exists between A
and B, we will takeRA andRB asRA

top andRB
top, the topological

radii9 of atoms A and B, respectively; otherwise,RA and RB

will be taken as the Bragg-Slater radii of atoms A and B taken
from ref 20.

III. Computational Details

We have used the GAMESS code21 to obtain all the molecular
wave functions in the ground electronic states and our PRO-
MOLDEN code to determine the atomic charges. All numerical
integrations were performed by using an angular Lebedev
quadrature and a trapezoidal radial quadrature described in ref
22. To achieve an accuracy in the integrations of at least
1.0 me, â-spheres were required in the QTAIM atomic partition,
with radii adjusted to 90% of the distance to the nearest
interatomic surface intersection. The number of radial and
angular points, both inside and outside theâ-spheres, were
varied until the required accuracy was obtained. The wave
functions were obtained (except when it is explicitly indicated)
from complete active space CAS[n,m] (n active electrons,m
active orbitals) multiconfiguration calculations. TheFA

0 (r ) were
generated in the Hartree-Fock ground electronic states of the
neutral or ionized atoms using the same basis as in the molecule,
and spherically symmetrized before they were used in PRO-
MOLDEN.

IV. Results and Discussion

In this section, we present and discuss the atomic charges
obtained with the methods defined in section II. First, we analyze
the basis set effects on the computed charges. For this purpose,
we have taken the HCN molecule as a test example, although
our results are general. Second, the results for the second-row
AHn saturated hydrides, the second-row diatomic molecules with
12, 14, and 20 electrons, several traditionally considered highly
ionic molecules, the CH3M (M ) Li, Na, K) systems, and a set
of representative charged molecules are discussed. These test
examples cover a wide spectrum of charge transfers. Results
from a wider set of molecules containing less polar bonds
come to the same conclusions and will not be commented on
here.

A. Basis Set Dependence on HCN.The restricted Hartree-
Fock (RHF) charges for the carbon and nitrogen atoms of HCN
using several basis sets are plotted in Figure 1. To avoid co-
lateral effects on the results, the molecular geometry has been
fixed to that obtained in a RHF/STO-3G minimization of the
energy. First of all, the MinDef method, as Mulliken’s classical

population analysis, shows the well-known basis set dependence.
Aside from these Hilbert-space partitioned methods, we can see
that, as soon as a d-type polarization function is added to the C
and N atoms, the charges given by VDD, Hirshfeld, and
QTAIM-F methods hardly change with the basis set. The effect
of including a p-type function in the H basis or diffuse s,p-type
functions is negligible in these three methods. The fuzzy-VDD
results, not displayed in Figure 1, run parallel to those in its
counterpart sharp version (VDD). It has been previously stated
that the VDD and Hirshfeld methods yield very similar and
almost neutral atoms.1 This result is also reproduced here, where
the C (N) atom charge is predicted marginally positive (negative)
in both bases. QTAIM-F C and N charges (=+0.20 e and
=-0.32 e, respectively, when at least a d-type polarization
function is included in the basis set) are slightly greater in
absolute value than the VDD charges.

As we can see, QTAIM and Becke(T) charges appear very
separated from the rest in Figure 1, being larger than in all the
above methods. Before including a first d-type polarization
function, the basis set dependence in these two methods is
relativly pronounced. Nevertheless, contrarily to what is found
when using MinDef charges, they converge to stable values
when the basis set is improved. It is interesting, but not
fortuitous, that Becke(T)’s charges almost run parallel to
QTAIM’s charges. The reason for this parallelism has to be
searched in Becke(T)’s definition of atomic regions, crucially
dependent on the atomic radiiRA used in their construction.19

For instance, a topological analysis of the electron density
predicts an increase ofRN from 1.391 to 1.424 bohr and a
decrease ofRC from 0.788 to 0.755 bohr in passing from the
6-311G(p) to the 6-311G(d) basis set. This produces an
expansion of Becke(T)’s atomic region for N and, consequently,
a gain of its electron population (that is, the N atom becomes
more negative) in going from the 6-311G(p) to the 6-311G(d)
basis set.

It is apparent from Figure 1 that the VDD and Hirshfeld
methods, in which the atomic regions are determined by factors
external to the wave function actually used in the calculation,
give C and N charges nearly constant, even when a d-type
function is included in the basis set. However, QTAIM, QTAIM-
F, and Becke(T) charges only show a near basis set indepen-
dence after using a d-type function in the calculation. In fact,
the QTAIM atomic charges derived using as fixed atomic
regions those determined from the topological analysis of the
charge density corresponding to the RHF/6-31G calculation
(QTAIM(*) in Figure 1) are less basis set dependent than the
genuine QTAIM charges.

From these remarks we conclude that (1) the RHF charge
density of HCN is practically converged by using a 6-311G(d)
basis set, suffering a negligible change by further basis set
improvements, and (2) the basis set independence of VDD and
Hirshfeld charges1 is not an intrinsic virtue of these two methods.
Rather it arises as a consequence of (i) the fast convergence of
the charge density as the wave function is improved and (ii)
the wave function-free definition of the atomic regions in these
two methods. This second conclusion is also supported by our
results in other less polar molecules such as simple hydrocarbons
or benzene. We believe that the goodness of a method should
not be judged on the basis set independence of its results but
on the convergence of these results to stable values when the
accuracy of the wave function is increased. It is suspicious, for
instance, that the HirshfeldQA’s for large polarized basis sets
are hardly distinguishable from those obtained from the
unrealistic STO-3G density at a given geometry.

TABLE 1: DIM and FIM Charge Density Analysis Methods
Used in This Work for Several Weight FunctionswA(r)

wA(r ) DIM FIM

QTAIM QTAIM QTAIM-F
Becke (RA/RB ) 1, k ) ∞) VDD
Becke (RA/RB ) 1, k ) 3) fuzzy-VDD
Becke (RA/RB ) RA

top/RB
top, k ) 3) Becke(T) -

Fdez Rico et al. MinDef -
Hirshfeld Hirshfeld Hirshfeld
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B. Atomic Charges in Representative Molecules.We have
performed CASSCF//6-311G(d,p) calculations on the second-
row AHn saturated hydrides including all the electrons in the
active space andm active orbitals (m ) 6 for LiH, m ) 7 for
BeH2, m ) 8 for BH3, and m ) 9 for CH4, NH3, H2O, and
HF). The results are collected in Table 2. As expected, the
atomic charge of the second row atom decreases from LiH to
HF in all the methods, being clearly positive for Li, Be, and B
and negative for N, O, and F. The C atom is always the nearest
to neutral in the sequence. For the QTAIM and Becke(T)
partitions,QC is positive and small, though it is slightly negative
in the other. Differences between the VDD and fuzzy-VDD
schemes are rather small, and the fuzzy-VDD method, which
requires less integration points than the VDD method to achieve
a comparable accuracy, may be considered as an accurate
alternative for the latter.

The similarity between the QTAIM and Becke(T) methods
is of a different type. Provided that atoms A and B are bonded,
the weight functionswA(r ) and wB(r ) in Becke(T)’s partition
are close to 0.5 (exactly 0.5 for a diatomic molecule) at the
point along the internuclear axis whererA/rB ) RA

top/RB
top. As a

result, the cutoff of the Becke (k f ∞) region almost coincides
with the bond critical point. Out but not very far from the A-B
axis the pointswA(r ) ) 0.5 will also be relatively close to the
QTAIM interatomic surface,23 so the similarities between both
methods found in Table 2 stem from the deliberate choice of
the atomic radii in Becke’s method as equal to the topological
ones.

From Table 2, it is clear that the QTAIM partition gives
higher atomic charges than the Hirshfeld, VDD, fuzzy-VDD,
and QTAIM-F methods. It has sometimes been suggested that
this is a sign of the exaggerated ionicity predicted by the QTAIM
method,1 and that, due to this, and also to its alleged basis set
dependence, a flow integration method, such as VDD, which

provides more “reasonable’’ charges and is less basis set
dependent, would be preferable. Concerning the basis set
dependence, we have already commented in subsection IV.A
how the QTAIM charges converge to final stable values upon
increasing the quality of the basis set, and also how the near
basis set independence of VDD and Hirshfeld charges emerges,
not from their intrinsic quality, but from the complete indepen-
dence of the atomic weight functionswA(r ) on the molecular
wave function. Regarding the more “reasonable’’ charges
provided by the VDD method, we want to stress a point that
we believe is a serious disadvantage of this and other FIM
schemes: its dependence on an arbitrary reference, resulting in
different atomic charges with the same wave function when one
changes the promolecular densityF0(r ). We analyze below this
issue in more detail.

C. Relevance of the Reference Densities.We have collected
in Table 3 the atomic charges for the second row diatomic
molecules with 12, 14, and 20 electrons. The results corre-
sponding to the VDD, fuzzy-VDD, and QTAIM-F methods were
obtained by computingF0(r ) either from theFA

0 ’s of the neutral
atoms or from theFA

0 ’s of the monopositive (Na+, Li+, Mg+,
Be+, Al+, B+, C+, Si+) and mononegative (F-, O-, N-, and
C-) ions. These ionic references are standard in the thermo-
chemistry of ionic systems, because multiply charged anions
are usually not stable. Several revealing facts emerge from our
results: (i) the atomic charges in the Hirshfeld, VDD, fuzzy-
VDD, and QTAIM-F methods are quite dependent on the
promolecular density used in the calculation; (ii) In LiF, BeO,
NaF, MgO, and AlN, the charges of the metal whenF0 is built
from the FA

0 ’s of the neutral atoms are very small; (iii) The
atomic charges in the above systems increase notably when the
FA

0 ’s of the ions are used. In LiF, BeO, NaF, and MgO, the
Hirshfeld, VDD, fuzzy-VDD, and QTAIM-F charges are in fact

Figure 1. Basis set dependence ofQC andQN (au) in HCN according to different methods defined in the text. The molecular geometry has been
fixed to that obtained in a RHF/STO-3G energy minimization. QTAIM(*) atomic charges were obtained using the 6-31G interatomic surface with
the rest of basis sets. The promolecular density, necessary in VDD, QTAIM-F, and Hirshfeld methods, is formed with the spherically averaged
atomic densities of the neutral atoms.

TABLE 2: CASSCF//6-311G(d,p) Atomic Charges for the Second Row Hydrides

method LiH (QLi) BeH2 (QBe) BH3 (QB) CH4 (QC) NH3 (QN) H2O (QO) HF (QF)

MinDef 0.609 0.547 0.895 -0.247 -0.251 -0.381 -0.367
QTAIM 0.902 1.672 1.929 0.014 -0.983 -1.087 -0.717
Becke(T) 0.718 1.304 1.841 0.063 -0.719 -0.638 -0.414
Hirshfeld 0.388 0.353 0.191 -0.101 -0.270 -0.308 -0.226
VDD 0.446 0.392 0.232 -0.039 -0.221 -0.301 -0.238
fuzzy-VDD 0.418 0.337 0.196 -0.061 -0.228 -0.298 -0.233
QTAIM-F 0.265 0.115 0.175 -0.030 -0.266 -0.281 -0.17Y
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fairly close to the QTAIM values. It seems that for these
molecules all the methods offer results more consistent with
each other when theFA

0 ’s of the ions are used. Our results also
support the following conclusion: atomic charges derived from
flow integration methods are not necessarily small. Rather, they
have a tendency to give values very similar to those of their
reference counterparts.

We can clearly appreciate this in Table 4, were we have
collected the RHF atomic charges for the positive atoms of some
molecules, widely accepted as largely ionic. In all of the cases,
the Hirshfeld, VDD, and QTAIM-F charges are very low when
the FA

0 ’s of the neutral atoms are used. However, all of them
increase noticeably, becoming very similar to the QTAIM
values, when theFA

0 ’s of the monopositive and mononegative
ions are employed. The case of BeF2 is particularly striking. In
this molecule, the Be atomic charge passes from about 0.09-
0.64e to 1.71-1.95e in going from the Be0F0 to the Be2+F-

FA
0 ’s.
The tendency of flow integration methods to predict atomic

charges resembling those of their parentFA
0 ’s is not exclusive

of molecules formed by two very different electronegative
atoms. In Table 5 we present a summary of the results obtained
for the CH3M (M ) Li, Na, K) molecules whenF0 is computed
either from theFA

0 of the neutral atoms or from theFA
0 of the

monopositive (M+) and mononegative (C-) ions (and neutral
H atoms). We observe again the non-uniqueness of Hirshfeld,
VDD, and QTAIM-F charges. These three methods give metallic
charges fairly close to the QTAIM values when ionicFA

0 ’s are
used to constructF0 and much smaller whenF0 is obtained from
the FA

0 ’s of the neutral atoms. It is also interesting to remark
that the C charges in this case are very similar in the three
hydrides and, within a given hydride, in the three flow
integration methods.

As final test examples, we have determined the atomic
charges for several charged molecules (OH-, H3O+, NO3

-,
NH4

+, and CN-) using the QTAIM method and three flow
integration schemes (Hirshfeld, VDD, QTAIM-F) with different
choices ofF0. Our results are gathered in Table 6. Several
interesting facts stand out. The QTAIM O atomic charge in
OH-, H3O+, and NO3

- is more negative than in the three flow
integration methods. Moreover, the O atomic charge in the latter
schemes changes considerably with the promolecular density.
The O atomic charge in OH-, H3O+, and NO3

- molecules
becomes more negative in passing from a O0 FA

0 to a O- FA
0 .

This also occurs with the N atomic charge in NH4
+ and the C

atomic charge in CN-. These numbers show again the tendency
of flow integration methods to give charges as close as possible
to those of their atomic references. Another deficiency of these
schemes is that, even using the sameFA

0 for a given atom, its

TABLE 3: Atomic Charges for the Second Row Diatomic Moleculesa

method LiF (Li) BeO (Be) BN (B) BF (B) CO (C) NaF (Na) MgO (Mg) AlN (Al) SiC (Si)

MinDef 0.892 0.746 0.271 0.233 0.106 0.982 0.977 0.584 0.354
QTAIM 0.929 1.631 1.200 0.897 1.152 0.932 1.084 0.935 0.974
Becke(T) 0.829 1.238 1.078 0.879 1.130 0.865 0.929 0.915 1.044
Hirshfeld 0.589 0.541 0.170 0.069 0.059 0.657 0.478 0.236 0.144

0.983 1.091 0.681 0.489 0.562 0.986 0.899 0.687 0.619
VDD 0.495 0.517 0.135 0.049 0.055 0.641 0.528 0.251 0.186

0.929 0.977 0.595 0.455 0.515 0.966 0.898 0.662 0.605
fuzzy-VDD 0.530 0.496 0.130 0.023 0.038 0.599 0.488 0.222 0.154

0.928 0.988 0.621 0.463 0.529 0.960 0.894 0.668 0.606
QTAIM-F 0.191 0.502 0.198 -0.056 0.040 0.535 0.504 0.267 0.207

0.982 1.179 0.709 0.383 0.538 0.982 0.916 0.680 0.636

a Calculations are CASSCF[8,8]//TZV(d) and CASSCF[10,10]//TZV(d) for the (12,20) and 14 isoelectronic series, respectively. The first (second)
entry in Hirshfeld, VDD, fuzzy-VDD, and QTAIM-F methods uses asFA

0(r ) to construct the promolecular density,F0(r ), the corresponding to the
neutral atoms (monopositive and mononegative ions).

TABLE 4: Atomic Charges for Several Molecules Widely
Recognized as Highly Ionica

molecule/atom QTAIM Hirshfeld VDD QTAIM-F

LiH/Li 0.911 0.413 0.474 0.259
0.991 0.972 1.000

NaH/Na 0.810 0.413 0.509 0.452
0.977 0.950 0.957

NaCl/Na 0.918 0.626 0.622 0.498
0.982 0.931 0.977

BeF2/Be 1.807 0.638 0.524 0.090
1.950 1.712 1.931

a First (second) entry numbers have been obtained using the Li0H0,
Na0H0, Na0Cl0, and Be0F0 (Li +H-, Na+H-, Na+Cl-, and Be2+F-)
FA

0 ’s.

TABLE 5: RHF/TZV ++(d,p) Atomic Charges for C and M
Atoms in the CH3M (M ) Li, Na, K) Moleculesa

CH3Li CH3Na CH3K

C Li C Na C K

QTAIM -0.572 0.912 -0.466 0.803 -0.454 0.852
Becke(T) -0.315 0.753 -0.216 0.675 -0.230 0.790
Hirshfeld -0.416 0.511 -0.388 0.503 -0.440 0.609

-1.118 0.968 -1.074 0.924 -1.024 0.895
VDD -0.220 0.388 -0.216 0.435 -0.281 0.547

-1.139 0.802 -1.110 0.790 -1.118 0.870
QTAIM-F -0.144 0.252 -0.294 0.432 -0.352 0.520

-1.216 0.962 -1.121 0.873 -1.077 0.892

a F0 in the first (second) entry is built from theFA
0 ’s of the neutral

atoms (neutral H atom, and C- and M+ ions).

TABLE 6: Atomic Charges for the OH -, H3O+, NO3
-,

NH4
+, and CN- Molecules at Their RHF Equilibrium

Geometriesa

molecule F0 atom QTAIM Hirshfeld VDD QTAIM-F

OH- O0H0 O -1.434 -0.940 -0.898 -1.051
OH- O-H0 O -1.105 -1.160 -1.120
OH- O0H- O -0.499 -0.568 -0.376
H3O+ O0H0 O -1.275 0.087 -0.019 0.389
H3O+ O-H0 O -0.134 -0.656 0.281
NO3

- O0N0 O -0.677 -0.424 -0.467 -0.463
NO3

- O-N0 O -0.570 -0.601 -0.578
NO3

- O0N- O -0.229 -0.269 -0.250
NH4

+ N0H0 N -1.124 0.091 -0.004 0.231
NH4

+ N-H0 N -0.191 -0.811 -0.047
CN- C0N0 C 0.763 -0.480 -0.448 -0.303
CN- C-N0 C -0.770 -0.746 -0.727
CN- C0N- C -0.188 -0.225 -0.184

a The basis set is 6-311G++(d,p) except in OH- which is
TZV++(2d,p).
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atomic charge in the molecule depends on theFA
0 ’s employed

for the rest of the atoms. This may be clearly seen in Table 6
by comparing (i) the O charge in OH- using O0H0 and O0H-

FA
0 ’s, (ii) the O charge in NO3- using O0N0 and O0N- FA

0 ’s,
and (iii) the C charge in CN- using C0N0 and C0N- FA

0 ’s. In all
of the cases, the charge is less negative (significantly so in
CN- ) when using a negative counteratomFA

0 .
Upon this scenario we clearly disapprove the use of flow

integration methods to derive atomic charges. If selected,
however, we may wonder which are the bestFA

0 ’s to be used.
We believe that an unambiguous criterion may be constructing
the promolecular density using theFA

0 ’s that provide a mini-
mum loss of information (in the sense of a minimum value of
the Kullback-Leibler entropy deficiencyI, eq 13) upon
molecule formation. Preliminary results in largely ionic mol-
ecules have shown thatI is much smaller when ions instead of
neutral atoms are used to construct theFA

0 ’s. As we have seen
in LiF, BeO, NaF, and MgO, FIM charges derived in that case
are relatively close to the QTAIM values.

V. Conclusions

In this work, we have compared the performance of popula-
tion analyses corresponding to several partitions of the molecular
electron density,F(r ), into atomic densities,FA(r ), with the help
of the atomic weight functionswA(r ). These functions may be
either discontinuous of continuous, providing an exhaustive or
a fuzzy partition of the physical space, respectively. Two
different types of methods (direct integration methods and flow
integration methods) have been established, and a closed unified
expression for the atomic charges in both of them has been given
in terms of thewA(r )’s.

These two types of schemes have been compared to each
other by computing the atomic charges of the second-row AHn

hydrides, second-row diatomic molecules with 12, 14, and 20
electrons, some small highly ionic molecules, the CH3M (M )
Li, Na, K) systems, and five simple molecular ions. Our analysis
shows that flow integration methods suffer from a very
undesirable property. They provide atomic charges that are
similar to those of the reference atomic densities employed in
the definition of their promolecular density. This means that
they are not univocally determined from the molecular wave
function, and the same wave function will yield different atomic
charges with different promolecule definitions. It is our opinion
that a well-defined molecular wave function should always
provide a unique set of atomic charges. We thus believe that
the non-uniqueness of the atomic charges for a fixed molecular
wave function is a very critical disadvantage of flow integration
methods. Consequently, we do not recommend using these
population analyses.

On the other hand, the purportedly poor quality of QTAIM
charges claimed in ref 1, due to their basis set dependence and
the “too ionic’’ molecules they provide, is a flawed conclusion.
QTAIM charges do obviously depend on the quality of the basis
set (just in the same way as it happens with quantum-mechanical
observables as the total energy) but reach final stable values in
the infinite basis set limit. Moreover, contrary to atomic charges
derived from flow integration methods, QTAIM atomic charges
are univocally defined. The goodness of a charge density
population analysis lies on the physical principles it is based
on, and also on its internal consistency. In this sense, the
outstading physical principles on which the QTAIM is based
make us advocate the use of the atomic charges derived from
this theory.
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